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Sarah Zakaib, Pedram Sadeghian, and Amir Fam

Synopsis: In this study, five specimens comprising concrete-filled glass fibre-reinforced
polymer (GFRP) tubes (CFFTs) with and without moment connections to concrete
footings were tested. The study aims at exploring the effect of combined maximum shear
and moment, both occurring at the same location, on the ultimate moment capacity of the
CFFT system, as well as the behaviour of the moment connection in general. Testing
involved three-point and four-point bending of simply supported specimens as well as
cantilever bending tests with varying shear spans and fixed end arrangements. The end
conditions of the CFFTs consisted of either direct embedment into concrete blocks with
steel dowels or mechanical clamping of the fixed end. For the GFRP tubes used, the
study concluded that the presence of shear at the location of maximum moment near the
connection in a cantilever setup does not cause reduction in flexural capacity, relative to
the pure bending strength of the CFFT. This confirms a similar conclusion reported in
literature for simply supported CFFT beams without end constraints. The study also
revealed that achieving tensile rupture of the tube does not guarantee that the full
potential moment capacity of the CFFT member is reached, as slip plays a key role at the
moment connection.

Keywords:  CFFT, footing, combined loading, connection, flexure, FRP, shear, tubes
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INTRODUCTION

The deterioration of infrastructure has led to new methods and materials for
construction that are more durable. Early on, it was demonstrated that rehabilitation of
aging infrastructure by wrapping concrete members with fibre reinforced polymers
(FRPs) is an accepted method of increasing their strength (Fardis and Khalili 1981). FRP
tubes, which are commercially available for the pipeline industry, have a great potential
as a stay-in-place forms that can be filled with concrete and used in a variety of structural
applications. This includes bridge piers, piles and utility poles. Early research by
Mirmiran and Shahawy (1997) demonstrated that the concrete-filled FRP tube (CFFT)
system can significantly enhance strength and ductility of columns through confinement
and control of the dilation of concrete. Additionally, the FRP tube protects the concrete
core from external aggressive environments. The CFFT system has also been studied in
flexure and under combined flexural and axial loading (Fam et al. 2003(a)) and field
installation of CFFTs as bridge piers occurred in the Route 40 Bridge in Virginia (Fam et
al. 2003(b)). A study on CFFT pile driving has shown the feasibility and success of
driving CFFT piles using conventional equipment in the field (Helmi et al. 2005).

Several studies have been carried out on CFFT connections to concrete footings.
Zhu et al. (2004 and 2006) studied various connections of CFFT columns to concrete
footings. In these studies, internal steel reinforcement was continuous through the full
height of the CFFT members and embedded through the footing. Nelson et al. (2008)
studied a moment connection by direct embedment of the CFFT into the footing without
any steel reinforcement. This paper examines the behaviour of CFFTs connected to
concrete footings through a combination of direct embedment of the CFFT into the
footing and steel dowels connecting the footing to the CFFT. The steel dowels only
extend into the CFFT within the portion embedded into the footing. Earlier research by
Ahmad et al. (2008) on the shear strength of CFFT members without internal longitudinal
steel reinforcement in a simple beam setup revealed that shear failure did not occur in
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short CFFT beams and that flexural strength was not compromised. This study addresses
the effect of combined flexure and shear on the strength of the CFFT member in a
cantilever setup, including the influence of the connection arrangement.

EXPERIMENTAL PROGRAM

Specimen Layout

Five CFFT specimens were fabricated and tested to determine the influence of
combined flexural and shear loading on their strength as well as the capacity of the
moment connection. Two of the CFFT specimens were tested as simply supported beams
in bending (Specimens B1 and B2), whereas the other three specimens were tested as
cantilevers (Specimens C1, C2, and C3). Details of the specimens are given in Table 1.
All specimens were created using tubes that had an outer diameter of 219 mm.

Table 1 – Test matrix.

Spec.
ID

Loading Type Span
(mm)

Shear Span
* D

Embedment
(mm)

f’c

(MPa)
B1 4-point bending 1900 N/A 300 41
B2 3-point bending 1000 2.25D N/A 30
C1 Cantilever 1040 4.75D 260 36
C2 Cantilever 1600 7.25D 260 34
C3 Cantilever 1040 4.75D (clamped)  610 30

B1 – In all previous research on CFFT members tested in flexure, three- or four-
point bending tests were carried out where the CFFT member extends from the constant
moment region into the shear span. Often, failure occurred just under one of the loading
points and hence it is difficult to isolate the effects of flexure and shear. In this study,
Specimen B1 was designed such that a CFFT segment is subjected to pure bending within
a constant moment region, without the influence of shear, and is shown in Figure 1. The
specimen was a simple beam loaded in four-point bending. The shear spans extending
over the end supports consisted of heavily reinforced concrete blocks, 800 mm (31-1/2
in) long, with a square cross-section of 400x400 mm (15-3/4 x 15-3/4 in). The CFFT tube
was located within the constant moment region and embedded 300 mm (11-13/16 in) on
each side into the concrete blocks. The clear length of the CFFT member within the
constant moment region was 660 mm (26 in) or 3D, where D is the outer tube diameter.
The span between supports was 1900 mm (74-3/16 in), with a shear span of 500 mm (19-
5/8 in) long on each side and a constant moment zone of 900 mm (35-7/16 in) between
the loading points, which ensures that the entire CFFT clear length is subject to pure
bending.

B2 – Specimen B2 was loaded in three-point bending with unrestrained ends
(i.e. no concrete blocks and slip between the tube and concrete core is unrestrained), as
shown in Figure 2. The span length was 1000 mm (39-3/8 in), giving a shear span of 500
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mm (19-5/8 in), that is a shear-span-to-diameter ratio of 2.25. The objective is to examine
the effect of a severe change in moment over the short span on flexural strength of the
specimen. In this specimen, given the relatively low shear-span-to-diameter ratio, a non-
negligible arching action may develop under 3-point bending, thus interacting with the
flexural mechanism and increasing flexural capacity.

Figure 1 – Test setup of specimen B1 (all dimensions in mm).

C1 – Cantilever specimen C1 was one of three CFFTs loaded with a single point
load at the free end, and fixed at the other end. The span of specimen C1 was 1040 mm
(41 in), or 4.75D. The fixed end consisted of a tube encased in a reinforced concrete
footing with all sides equal to 500 mm (19-5/8 in). The tube was embedded 260 mm (10-
1/4 in) into the concrete block and connected by steel dowels within the embedment
length as will be described. To create a flat loading point at the free end, the CFFT was
also encased in a concrete block of equal side lengths of 400 mm (15-3/4 in) in each
direction, but was embedded only 220 mm (8-5/8 in) due to the very low moment at the
free end. Figure 3 shows a typical setup used for specimens C1 and C2. Specimen C1 is
intended to study the connection under the combined shear and bending for a shear span-
to-diameter ratio of 4.75.

C2 – Specimen C2 was also loaded as a cantilever embedded in a concrete block
for fixity, using a similar joint to that in specimen C1. The main difference between
specimens C2 and C1 is the span length which was 1600 mm (63 in) or 7.25D for C2.
The test setup is similar to that shown in Figure 3.
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Figure 2 - Test setup of specimen B2 (all dimensions in mm).

Figure 3 - Test setup of specimens C1 and C2 (all dimensions in mm).
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C3 – Specimen C3 had the same span as specimen C1, 1040 mm (41 in) or
4.75D, and was also a cantilever specimen. The difference is that fixed end for this
specimen is the result of mechanical clamping of the tube between two plaster-filled steel
channel sections. The tube was clamped over a length of 610 mm (24 in) and loaded
directly at the other end where a short overhang of 482 mm (19 in) was provided to allow
for rotation of the beam. Figure 4 shows a schematic of the test setup. The objective of
testing specimen C3 was to see the effect on the moment capacity of a close-to-perfect
fixed end where no slip would occur, and compare this behaviour to an equal span
specimen C1 that has a practical moment connection to a concrete footing. Also,
specimen C3 is compared to a specimen that was tested by Mitchell and Fam (2010), with
the same tube and fixed end arrangement, but with a 2665 mm (105 in) or 12.2D span, to
examine the effect of shear span-to-diameter ratio.

Figure 4 - Test setups of specimen C3 and specimen tested by Mitchell and Fam (2010).
All dimensions in mm.

Material Properties

Tubes – The tubes used for all tests were identical. The E-glass and epoxy tubes
were fabricated by Ameron International, in the Bondstrand 3200 pipes series for
transmission of fluids. They have an outer diameter of 219 mm (8-5/8 in) and wall
thickness of 4.3 mm (slightly more than 1/8 in), in a 7-ply [-86/+6/-86/+6/-86/+6/-86]
lay-up alternating layers of hoop and longitudinal fibres. The angles of each layer (in
degrees) are described with respect to the longitudinal axis of the tube. Tensile tests were
performed on coupons cut from the tube in the longitudinal direction. The coupons had a
width of 25 mm (1 in), tabs that are 115 mm (4-1/2 in) long at both ends, and 37 mm (1-
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1/2 in) gauge length between grips. The small gauge length was chosen to decrease the
effect of the discontinuous fibres wound at 6 from the longitudinal axis of the tube,
following the recommendations by Mandal (2004) that a shorter coupon will result in
closer behaviour and failure strain to that of the full tube. Electric resistance strain gauges
were placed on either side of the coupon at the centre of the gauge length. Figure 5 shows
the stress-strain curve of the GFRP tube in tension, which is somewhat bilinear, with an
initial modulus of 19.5 GPa (2828 ksi). The ultimate strength and strain were 250 MPa
(36.3 ksi) and 0.0205, respectively. The modulus changed to 10.7 GPa (1552 ksi) at a
stress of 43 MPa (6.2 ksi) and a strain of 0.0045.

Figure 5 – Stress-strain curve of tubes from coupon testing.

Concrete – Table 1 shows the concrete compressive strength based on standard
concrete cylinder tests at the time of the test. The concrete strength varied from 30 to 41
MPa (4.35 to 5.9 ksi). A previous study by Fam and Rizkalla (2003) showed that the
influence of concrete strength on flexural strength of CFFT members is insignificant,
which is quite different from the case of axially loaded CFFT members in compression,
due to the confinement effect. For the concrete blocks, the compressive strength at the
time of testing ranged from 29 to 31 MPa (4.4 ksi on average).

Steel – Grade 400W steel reinforcing bars were used in specimens B1, C1, and
C2. A combination of 10M and 15M bars were used for longitudinal and transverse
reinforcement in the concrete blocks. Four 20M dowels, bent at 90, were used to connect
each tube to the concrete blocks. The dowels were extended into the tube a distance equal
to the embedment length of the tubes in the concrete blocks.

Fabrication

Specimens B1, C1, and C2 were all fabricated at the same time, in two separate
stages. The first stage involved filling the tubes whilst in an upright position and inserting
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the dowels into each end. The tubes were then laid horizontally into the formwork of the
end blocks and the concrete was poured at a later stage. This practice was carried out for
convenience in the lab, but for practical applications, the footing will be cast before
filling the tube. Figure 6 shows the typical fabrication process for specimen B1.
Specimens B2 and C3 were simply filled with concrete in an upright position.

(a) (b) (c)

Figure 6 - Fabrication of specimen B1: a) CFFT with end dowels, b) reinforcement of end
blocks, and c) casting the end block.

Test Set-up

Figures 1 to 4 show the test setups of all specimens. In testing specimen B1 as a
simple beam, the loading and supporting points were all relative to the two rigid concrete
prisms, ensuring pure bending over the CFFT segment. A hinged support was provided at
one end while a roller support was provided at the other end. Specimen B2 was also
simply supported, using a hinge and roller at either end. A plaster-filled short steel
channel section was used at each support and at the loading point to conform to the round
surface of the CFFT of specimen B2. For cantilever specimens C1 and C2, the concrete
blocks at the fixed ends were clamped using a heavy HSS steel section, anchored to the
machine using 25 mm (1 in) diameter high-strength threaded rods. Specimen C3 was also
clamped using HSS sections anchoring the steel channel sections to the machine. Figure 7
shows pictures of the test setups of all specimens. A 900 kN (202 kips) capacity
mechanical testing machine was used to test all specimens under stroke control.
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(a) (b)

(c)                                                               (d)

Figure 7 – Test setups for specimens: (a) B1, (b) B2, (c) C1 and C2 and (d) C3.

Instrumentation

Strain measurements were taken using electrical resistance strain gauges and
position indicator (PI) gauges. Deflection and slip measurements were taken using linear
potentiometers (LPs). The locations of all instrumentation can be seen for each test in
Figures 1 to 4. Load was measured through a load cell built in to the machine.

TEST RESULTS

Figure 8 shows the load-deflection responses of all test specimens, while Figure
9 shows the load-longitudinal strain responses at the maximum moment regions. In the
following sections, failure modes and the behaviour are discussed in detail.

Failure Modes

Specimen B1 reached a load level very close to that corresponding to flexural
failure of the CFFT member, as evident by the tensile strains in Figure 9; however, slip
occurred between the CFFT member and the concrete block portion, leading to
significant load drop. Slip was associated with radial cracking of the concrete block as
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shown in Figure 10(a). However, as indicated from the tensile strains, flexural tension
failure was quite imminent. The tensile strain in the tube at failure was 0.0199, while the
average tensile failure strain of the tube from the coupon tests is 0.0205. Specimen B2
failed in tension at mid-span by rupture of the GFRP tube, as shown in Figure 10(b). The
strain at failure was 0.0243. Some slip occurred between the concrete core and the tube,
as shown in Figure 11(a).

All three cantilever specimens (C1, C2, and C3) failed through tensile rupture of
the tube, as shown in Figure 10(b). Figure 12 shows the load-slip responses of cantilever
specimens C1 and C2. The slip is measured between the GFRP tube and the concrete
footing; essentially the tube is pulled out of the concrete block. It is clear that slip in
specimen C2 was significantly larger than that of C1. Clearly, there appears to be a
correlation between the span length and the amount of slip, as the fixed end arrangements
were identical in both specimens. Specimen C2 slipped significantly more than specimen
C1, as shown in Figure 11(b), and both footings had some radial cracks.

Specimen C3, which was not embedded in a concrete footing but rather clamped
mechanically, failed also by rupture in tension at the highest moment capacity of all three
cantilever specimens, though very close to that of C1 and B1. No slip was observed in
specimen C3, and it failed at a tensile strain of 0.0240.

Figure 8 – Load-deflection behaviour of test specimens.
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Figure 9 – Load-strain behaviour of test specimens.

(a) (b)

Figure 10 - Failure modes of (a) Specimen B1 and (b) Specimens B2 and C1 to C3.
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(a) (b)

Figure 11 – (a) Internal CFFT concrete slip, and (b) External CFFT concrete slip.

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12

Slip (mm)

Lo
ad

 (k
N

)

C1

C2

Figure 12 – Load-slip behaviour of specimens C1 and C2.
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Moment-Curvature Responses

Since the boundary conditions and spans varied among the test specimens, the
behaviour of the different specimens is compared based on the moment-curvature
responses. The moment-curvature behaviour of the five specimens is shown in Figure 13.
The curvature was determined as the slope of the strain profile at the maximum moment
locations. Generally, all specimens showed similar behaviour, with the first cracking
occurring around a moment of 10 kN.m (88.5 kipin). This is followed by a reduction in
stiffness and slightly nonlinear behaviour. The nonlinear behaviour results from the
combined effects of concrete nonlinearity, increased cracking and the tube bi-linear
stress-strain behaviour associated with splitting of the hoop fibres. Over the entire set of
tests, the maximum moment achieved was 59.4 kN.m (525.7 kipin) for Specimen B2 and
the average moment was 53.4 kN.m (472.6 kipin), not including specimen C2. Specimen
C2 failed at a significantly lower moment of 31.5 kN.m (278.8 kipin), showing a 40%
reduction in capacity relative to the other specimens.

Figure 13 – Moment-curvature behaviour of test specimens.

It is worth noting that identical CFFT of the same tube used in this study and a
concrete fill of 44 MPa (6.4 ksi) compressive strength was tested by Fam and Mitchell
(2010), using a setup similar to that of specimen C3 of this study but with a span of 2.665
m (8.8 ft), which is equivalent to 12.2D. That specimen had flexural tension failure by
rupture of the tube at a moment of 56.9 kN.m (504 kip.in). The shear span of this
specimen is long enough to assure that shear did not affect the flexural strength of the

Mitchell and Fam (2010)
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specimen. Also, the moment capacity of this specimen is quite consistent with the value
obtained in this study for specimen B1, based on a slight extrapolation of the load-strain
response to hypothetically reach the rupture strain of the tube, which although was
imminent, was not reached because of the slip failure. In the same study by Fam and
Mitchell (2010), a hollow tube was also tested under the same conditions and achieved
29.63 kN.m (262 kip.in), giving the lower bound strength of the system. This information
will shed light on the behaviour of the specimens tested in this study, as will be discussed
in the following sections.

Effect of Shear Span Length of Cantilevered CFFTs

Mechanically clamped end – Specimens C3 and the one tested by Fam and
Mitchell (2010) were similar in test setup and fixed end arrangements. The main
difference was the span lengths, which were 4.75D and 12.2D, respectively. It is noted
from Figure 13 that the moment capacity of specimen C3 is only 7% lower than the other
one, despite the significantly shorter span and hence the higher influence of shear. Given
the variability of concrete fill strengths and the well established possibilities of variation
of rupture strains of the tube, this 7% reduction is not significant enough to be attributed
to the influence of higher shear forces. As such, it may be concluded that shear does not
lead to reduction in flexural strength in fixed-end cantilevered CFFT members. This
confirms the findings established earlier for CFFT simply supported beams by Ahmad et
al. (2008).

Concrete footing for fixed end – Specimens C1 and C2 both had the same fixed-
end arrangements and detailing, using a concrete footing. They had shear spans of 4.75D
and 7.25D, respectively. While Specimen C1 with the shorter span achieved very close,
but not quite, its potential flexural strength and failed at a moment of 49.2 kN.m (435
kip.in), Specimen C2, with the longer span, failed at a significantly lower moment of 30.2
kN.m (267 kip.in).  It is important to note that both specimens failed by tensile rupture of
the tube.  It is also worth noting that the slip in Specimen C2 at failure was 11 mm (0.43
in), which is significantly larger than that in C1 at the same load level, 1.3 mm (0.05 in),
as shown in Figure 12. The slip in Specimen C1 at failure was only 3 mm (0.12 in).

This behaviour is very significant; it clearly points out that achieving tension
failure (rupture) of the tube does not guarantee achieving the full potential flexural
moment capacity of the CFFT member. The reduction in moment capacity is clearly
attributed to the influence of slip of the concrete core, at the critical maximum moment
cross-section. The concrete core inside the tube, within the segment embedded in the
footing was well anchored to the footing through the steel dowel bars. As such, the
observed CFFT slip from the footing (Figure 11(b)) was in fact a slip of the GFRP tube,
relative to both the external and internal concrete (i.e. the footing and the concrete core
segment within the footing, respectively). This behaviour is illustrated in Figure 14(a).
The result is widening of the internal flexural crack in the concrete core inside the tube at
the footing face, due to that slip. This leads to significant reduction in the size of the
intact concrete core compression zone, or even a complete separation in the entire
concrete core at large slip, meaning a complete loss of the concrete compression zone.
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The cross-section at this point could be somewhat similar to that of a hollow GFRP tube.
This is supported by the observed very low moment capacity of specimen C2, which is in
fact very close to that of the hollow tube tested by Fam and Mitchell (2010). This
problem could be avoided either by embedding the CFFT an additional length inside the
footing to reduce slip, or extending the steel dowels further into the CFFT.

It is important to note that a similar behaviour also occurs in short simply
supported CFFT beams, where the unrestrained slip at the ends (Figure 11(a)) leads to a
reduction of the concrete core compression zone side, as shown in Figure 14(b), and
hence a reduction in moment capacity. However, because of the concrete arching action
occurring in short and deep beams, the strength enhancement due to the arching action
compensates for the weakening effect arising from the reduction of the compression zone
size. The apparent result is no loss of the moment capacity or even a little gain as was
observed in specimen B2 (based on low shear span and arching action), and also reported
earlier by Ahmad et al. (2008).

(a) Cantilever CFFT before and after slip

(b) Simple beam CFFT before and after slip

Figure 14 – Influence of concrete core slip on compression zone size

Effect of Fixed End Arrangement

Specimens C1 and C3 both had the same shear span of 4.75D but C1 had a
moment connection through a concrete footing detailing, while C3 was mechanically
clamped. In this case both specimens achieved a comparable moment capacity, with
specimen C1 only 3.5% lower than C3, as shown in Figure 12. This suggests that the
moment connection succeeded for this particular shear span length. However, clearly the
premature failure of specimen C2 with the same moment connection but longer shear
span suggests that the connection is vulnerable to significant slippage and cracking as the
span gets longer.

x1

x2<x1
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crack

Slip Wider and deeper
crack

crackcrack

Before slip
After slip

After slipBefore slip
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CONCLUSIONS

In this study cantilevered CFFT members with different fixed end arrangements
and different shear spans were tested. Additional CFFT control specimens were also
tested as simply supported beams. The moment connections studied were a mechanically
clamped fixed end and a CFFT embedment into a concrete footing with steel dowels
extending from the footing into the concrete core of the CFFT, within the embedment
length. The objectives of the study were to examine the effects of shear span length and
moment connection detailing on flexural strength of CFFT cantilevered members. The
following conclusions are drawn:

1. In short CFFT cantilevered members, the high level of shear does not cause
shear failure or reduction in the ultimate moment capacity. A similar observation
was reported in literature for simply supported CFFT beams.

2. Rupture of the GFRP tube in tension in the CFFT system is not necessarily an
indication of achieving its full potential flexural strength. Slip between the
concrete core and the tube in the vicinity of the moment connection could
significantly reduce moment capacity, while the tube still failing in tension.

3. The effectiveness of the CFFT-footing moment connection studied reduces as
the span of the CFFT member increases, due to the increased slip. The
connection was successful in developing the full CFFT flexural strength for the
span of 4.75D but not for the case of 7.25D, where only 40% of the flexural
strength was achieved.

It is recommended that concrete footings of larger dimensions than those used in
this study be used, to avoid cracking of the footing. It is also recommended that the CFFT
embedment into the footing be increased or the steel dowels embedment into the concrete
core of the CFFT member increase, to reduce the possibility of slip which could lead to
reduction in moment capacity.
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